Counting irreducible binomials over finite fields
نویسندگان
چکیده
منابع مشابه
Permutation Binomials over Finite Fields
We prove that if xm + axn permutes the prime field Fp, where m > n > 0 and a ∈ Fp, then gcd(m − n, p − 1) > √ p − 1. Conversely, we prove that if q ≥ 4 and m > n > 0 are fixed and satisfy gcd(m − n, q − 1) > 2q(log log q)/ log q, then there exist permutation binomials over Fq of the form xm + axn if and only if gcd(m,n, q − 1) = 1.
متن کاملIrreducible Polynomials over Finite Fields
As we will see, modular arithmetic aids in testing the irreducibility of polynomials and even in completely factoring polynomials in Z[x]. If we expect a polynomial f(x) is irreducible, for example, it is not unreasonable to try to find a prime p such that f(x) is irreducible modulo p. If we can find such a prime p and p does not divide the leading coefficient of f(x), then f(x) is irreducible ...
متن کاملCounting curves over finite fields
Article history: Received 25 August 2014 Received in revised form 10 September 2014 Accepted 18 September 2014 Available online 4 November 2014 Communicated by H. Stichtenoth MSC: 11G20 10D20 14G15 14H10
متن کاملConstructing irreducible polynomials over finite fields
We describe a new method for constructing irreducible polynomials modulo a prime number p. The method mainly relies on Chebotarev’s density theorem.
متن کاملConstruction of Irreducible Polynomials over Finite Fields
In this paper we investigate some results on the construction of irreducible polynomials over finite fields. Basic results on finite fields are introduced and proved. Several theorems proving irreducibility of certain polynomials over finite fields are presented and proved. Two theorems on the construction of special sequences of irreducible polynomials over finite fields are investigated in de...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Finite Fields and Their Applications
سال: 2016
ISSN: 1071-5797
DOI: 10.1016/j.ffa.2015.12.001